ÇANKAYA UNIVERSITY
Department of Mathematics

MCS 107 - Calculus for Business and Economics I

FIRST MIDTERM EXAMINATION

 24.07.2017
STUDENT NUMBER:

NAME-SURNAME:
SIGNATURE:
INSTRUCTOR:
DURATION: 80 minutes

Question	Grade	Out of
1		20
2		18
3		15
4		14
5		15
6		20
Total		102

IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.
2) Check that the exam paper contains 6 problems.
3) Show all your work. No points will be given to correct answers without reasonable work.
4) Find the solution sets of the following expressions.
a) $\frac{8}{x^{2}-x-6}=\frac{2}{x-3}+\frac{1}{x+2} \quad \Longrightarrow \quad x=\frac{7}{3}$
b) $(x-2)^{2}+5 x-6=0 \quad \Longrightarrow \quad x^{2}+x-2=0 \quad \Longrightarrow \quad x=1, x=-2$
c) $\sqrt{2 x+7}=x-4 \quad \Longrightarrow 2 x+7=x^{2}-8 x+16 \quad \Longrightarrow x^{2}-10 x+9=0 \quad \Longrightarrow \quad x=1, x=9$

For $x=1 \sqrt{9}=-3$ but it is not possible so only solution is $x=9$.
d) $\left|\frac{3 x-1}{2}\right|<4 \quad \Longrightarrow \quad-4<\frac{3 x-1}{2}<4 \quad \Longrightarrow \quad \frac{-7}{3}<x<3 \quad \Longrightarrow \quad x \in\left(\frac{-7}{3}, 3\right)$
2) Let $f(x)=x^{2}-1$ and $g(x)=\frac{1}{x+1}$.
a) Find $(f \circ g)(x),(g \circ f)(x),(f-g)(x)$ and $(f g)(x)$
b) Evaluate $(f+3 g)(0)$ and $(f g)(2)$.

- $(f \circ g)(x)=\left(\frac{1}{x+1}\right)^{2}-1$
- $(g \circ f)(x)=\frac{1}{x^{2}}$
- $(f-g)(x)=x^{2}-1-\frac{1}{x+1}=\frac{x^{3}+x^{2}-x-2}{x+1}$
- $(f g)(x)=x-1$
- $(f+3 g)(0)=2$
- $(f g)(2)=1$

3) For the function $f(x)=x^{2}-4 x-12$,
a) Find vertex, x-intercept and y-intercept points.
b) Find Domain (f) and Range (f).
c) Sketch the graph of the function.

Vertex: $(2,-16)$
y-intercept: $(0,-12)$
x-intercepts: $(-2,0),(6,0)$
$\operatorname{Domain}(f):(-\infty, \infty)$
$\operatorname{Range}(f):[-16, \infty)$

4) a) Find equation of a line passing through the point $(1,-2)$ and perpendicular to the line $2 x+y+3=0$.

Slope of the line $2 x+y+3=0 m_{1}=-2$
Since lines are perpendicular $m m_{1}=-1 \quad \Longrightarrow \quad m=1 / 2$
Line equation: $y-y_{1}=m\left(x-x_{1}\right) \quad \Longrightarrow \quad 2 y-x+5=0$
b) Find the compound amount if 1000 TL is invested for 2 years at 8% compounded quarterly.
$S=P(1+r)^{n}=1000(1+0.02)^{8}=1000(1.02)^{8}$
5) Solve the following equalities.
a) $e^{x+1}-1=2$
$e^{x+1}=3 \quad \Longrightarrow \quad x+1=\ln 3 \quad \Longrightarrow \quad x=\ln 3-1$
b) $\log _{5} 50-\log _{5} 2=\log _{5} 100-x$
$x=\log _{5} 100-\log _{5} 50+\log _{5} 2=\log _{5}\left(\frac{1002}{50}\right)=\log _{5} 4$
c) $\ln (x+6)-\ln (2)=2 \ln x$
$\ln \left(\frac{x+6}{2}\right)=\ln \left(x^{2}\right) \quad \Longrightarrow \quad \frac{x+6}{2}=x^{2} \quad \Longrightarrow \quad 2 x^{2}-x-6=0 \quad \Longrightarrow$ $x=2, x=-3 / 2$ but $\ln (-3 / 2)$ is undefined only solution is $x=2$.
6) a)Evaluate the following limits.
i) $\lim _{x \rightarrow 5} \frac{x-5}{\sqrt{x-1}-2}=\lim _{x \rightarrow 5} \frac{(x-5)(\sqrt{x-1}+2)}{x-5}=4$
ii) $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{4-2 x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{2}}{-2 x^{2}}=\frac{-1}{2}$
iii) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-2 x-3}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(x+1)}=\frac{1}{x+1}=\frac{1}{4}$
b) Let $f(x)= \begin{cases}\frac{x}{x^{2}+x+1}, & \text { if } x<0 \\ 1, & \text { if } x=0 \\ e^{x^{2}+2 x}-1, & \text { if } x>0 .\end{cases}$

Is $f(x)$ continuous at $x=0$? Verify your answer.
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=0 \Longrightarrow \quad \lim _{x \rightarrow 0} f(x)=0$ but since $f(0)=1 \neq \lim _{x \rightarrow 0} f(x), f$ is not continuous.

