

ÇANKAYA UNIVERSITY Department of Mathematics

MCS 107 - Calculus for Business and Economics I

FIRST MIDTERM EXAMINATION 24.07.2017

STUDENT NUMBER: NAME-SURNAME: SIGNATURE: INSTRUCTOR: DURATION: 80 minutes

Question	Grade	Out of
1		20
2		18
3		15
4		14
5		15
6		20
Total		102

IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.

2) Check that the exam paper contains 6 problems.

3) Show all your work. No points will be given to correct answers without reasonable work.

1) Find the solution sets of the following expressions.

a)
$$\frac{8}{x^2 - x - 6} = \frac{2}{x - 3} + \frac{1}{x + 2} \implies x = \frac{7}{3}$$

b) $(x - 2)^2 + 5x - 6 = 0 \implies x^2 + x - 2 = 0 \implies x = 1, x = -2$
c) $\sqrt{2x + 7} = x - 4 \implies 2x + 7 = x^2 - 8x + 16 \implies x^2 - 10x + 9 = 0 \implies x = 1, x = 9$
For $x = 1$ $\sqrt{9} = -3$ but it is not possible so only solution is $x = 9$.
d) $\left|\frac{3x - 1}{2}\right| < 4 \implies -4 < \frac{3x - 1}{2} < 4 \implies -\frac{7}{3} < x < 3 \implies x \in \left(\frac{-7}{3}, 3\right)$
2) Let $f(x) = x^2 - 1$ and $g(x) = \frac{1}{x + 1}$.
a) Find $(fog)(x), (gof)(x), (f - g)(x)$ and $(fg)(x)$
b) Evaluate $(f + 3g)(0)$ and $(fg)(2)$.
• $(fog)(x) = \left(\frac{1}{x + 1}\right)^2 - 1$
• $(gof)(x) = \frac{1}{x^2}$
• $(f - g)(x) = x^2 - 1 - \frac{1}{x + 1} = \frac{x^3 + x^2 - x - 2}{x + 1}$
• $(fg)(x) = x - 1$
• $(fg)(2) = 1$

3) For the function $f(x) = x^2 - 4x - 12$,

- a) Find vertex, x-intercept and y-intercept points.
- **b)** Find Domain(f) and Range(f).
- c) Sketch the graph of the function.

Vertex:
$$(2, -16)$$

y-intercept: $(0, -12)$
x-intercepts: $(-2, 0), (6, 0)$
Domain (f) : $(-\infty, \infty)$
Range (f) : $[-16, \infty)$

4) a) Find equation of a line passing through the point (1, -2) and perpendicular to the line 2x + y + 3 = 0.

Slope of the line 2x + y + 3 = 0 $m_1 = -2$ Since lines are perpendicular $mm_1 = -1 \implies m = 1/2$ Line equation: $y - y_1 = m(x - x_1) \implies 2y - x + 5 = 0$

b) Find the compound amount if 1000 TL is invested for 2 years at 8% compounded quarterly.

$$S = P(1+r)^{n} = 1000(1+0.02)^{8} = 1000(1.02)^{8}$$

5) Solve the following equalities.

a)
$$e^{x+1} - 1 = 2$$

 $e^{x+1} = 3 \implies x+1 = \ln 3 \implies x = \ln 3 - 1$
b) $\log_5 50 - \log_5 2 = \log_5 100 - x$
 $x = \log_5 100 - \log_5 50 + \log_5 2 = \log_5 \left(\frac{100\ 2}{50}\right) = \log_5 4$
c) $\ln(x+6) - \ln(2) = 2\ln x$
 $\ln\left(\frac{x+6}{2}\right) = \ln(x^2) \implies \frac{x+6}{2} = x^2 \implies 2x^2 - x - 6 = 0 \implies x = 2, x = -3/2$ but $\ln(-3/2)$ is undefined only solution is $x = 2$.

6) a)Evaluate the following limits.

i)
$$\lim_{x \to 5} \frac{x-5}{\sqrt{x-1-2}} = \lim_{x \to 5} \frac{(x-5)(\sqrt{x-1+2})}{x-5} = 4$$

ii)
$$\lim_{x \to \infty} \frac{x^2-1}{4-2x^2} = \lim_{x \to \infty} \frac{x^2}{-2x^2} = \frac{-1}{2}$$

iii)
$$\lim_{x \to 3} \frac{x-3}{x^2-2x-3} = \lim_{x \to 3} \frac{x-3}{(x-3)(x+1)} = \frac{1}{x+1} = \frac{1}{4}$$

b) Let $f(x) = \begin{cases} \frac{x}{x^2+x+1}, & \text{if } x < 0\\ 1, & \text{if } x = 0\\ e^{x^2+2x} - 1, & \text{if } x > 0. \end{cases}$

Is f(x) continuous at x = 0? Verify your answer.

 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = 0 \implies \lim_{x \to 0} f(x) = 0 \text{ but since } f(0) = 1 \neq \lim_{x \to 0} f(x), f \text{ is not continuous.}$